Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576030

RESUMO

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Assuntos
Epigenômica , Neoplasias , Humanos , Aprendizado de Máquina não Supervisionado , Computação em Nuvem , Neoplasias/diagnóstico , Neoplasias/genética , Metilação de DNA
3.
Childs Nerv Syst ; 40(4): 1259-1270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38276973

RESUMO

BACKGROUND: Intracranial teratoma represents a rare neoplasm, occurring predominantly during childhood. Characteristic symptoms depend on the location but are mainly hydrocephalus, visual disturbances, hypopituitarism, and diabetes insipidus. Initial diagnosis can be challenging due to similar radiological features in both teratomas and other lesions such as craniopharyngiomas. Gross total resection is recommended if feasible and associated with a good prognosis. CASE DESCRIPTION: A 10-year-old girl presented with newly diagnosed growth retardation, fatigue, cephalgia and bilateral hemianopia. Further laboratory analysis confirmed central hypothyroidism and hypercortisolism. Cranial magnetic resonance imaging showed a cystic space-occupying lesion in the sellar and suprasellar compartment with compression of the optic chiasm without hydrocephalus present, suspicious of craniopharyngioma. Subsequently, an endonasal endoscopic transsphenoidal near-total tumor resection with decompression of the optic chiasm was performed. During postoperative recovery the patient developed transient diabetes insipidus, the bilateral hemianopia remained unchanged. The patient could be discharged in a stable condition, while hormone replacement for multiple pituitary hormone deficiency was required. Surprisingly, histopathology revealed conspicuous areas of skin with formation of hairs and squamous epithelia, compatible with a mature teratoma. CONCLUSIONS: We present an extremely rare case of pediatric sellar teratoma originating from the pituitary gland and a review of literature focusing on the variation in presentation and treatment. Sellar teratomas are often mistaken for craniopharyngioma due to their similar radiographic appearances. However, the primary goal of treatment for both pathologies is to decompress eloquent surrounding structures such as the optic tract, and if applicable, resolution of hydrocephalus while avoiding damage to the pituitary stalk and especially the hypothalamic structures. If feasible, the aim of surgery should be gross total resection.


Assuntos
Neoplasias do Sistema Nervoso Central , Craniofaringioma , Diabetes Insípido , Hidrocefalia , Hipopituitarismo , Neoplasias Hipofisárias , Teratoma , Feminino , Humanos , Criança , Craniofaringioma/cirurgia , Hemianopsia , Neoplasias Hipofisárias/cirurgia , Neoplasias do Sistema Nervoso Central/complicações , Teratoma/cirurgia , Hidrocefalia/complicações
4.
Acta Neuropathol ; 147(1): 22, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265489

RESUMO

Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.


Assuntos
Ependimoma , Neoplasias da Medula Espinal , Adulto , Criança , Humanos , Transcriptoma , Perfilação da Expressão Gênica , Mutação , Epigênese Genética
5.
Clin Chem ; 70(1): 250-260, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37624932

RESUMO

BACKGROUND: Molecular brain tumor diagnosis is usually dependent on tissue biopsies or resections. This can pose several risks associated with anesthesia or neurosurgery, especially for lesions in the brain stem or other difficult-to-reach anatomical sites. Apart from initial diagnosis, tumor progression, recurrence, or the acquisition of novel genetic alterations can only be proven by re-biopsies. METHODS: We employed Nanopore sequencing on cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and analyzed copy number variations (CNV) and global DNA methylation using a random forest classifier. We sequenced 129 samples with sufficient DNA. These samples came from 99 patients and encompassed 22 entities. Results were compared to clinical diagnosis and molecular analysis of tumor tissue, if available. RESULTS: 110/129 samples were technically successful, and 50 of these contained detectable circulating tumor DNA (ctDNA) by CNV or methylation profiling. ctDNA was detected in samples from patients with progressive disease but also from patients without known residual disease. CNV plots showed diagnostic and prognostic alterations, such as C19MC amplifications in embryonal tumors with multilayered rosettes or Chr.1q gains and Chr.6q losses in posterior fossa group A ependymoma, respectively. Most CNV profiles mirrored the profiles of the respective tumor tissue. DNA methylation allowed exact classification of the tumor in 22/110 cases and led to incorrect classification in 2/110 cases. Only 5/50 samples with detected ctDNA contained tumor cells detectable through microscopy. CONCLUSIONS: Our results suggest that Nanopore sequencing data of cfDNA from CSF samples may be a promising approach for initial brain tumor diagnostics and an important tool for disease monitoring.


Assuntos
Neoplasias Encefálicas , Ácidos Nucleicos Livres , Sequenciamento por Nanoporos , Humanos , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Mutação
6.
Neuro Oncol ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38158710

RESUMO

BACKGROUND: Embryonal tumors with multilayered rosettes (ETMR) are rare malignant embryonal brain tumors. The prognosis of ETMR is poor and novel therapeutic approaches are desperately needed. Comprehension of ETMR tumor biology is currently based on only few previous molecular studies, which mainly focused on the analyses of nucleic acids. In this study, we explored integrated ETMR proteomics. METHODS: Using mass spectrometry, proteome data were acquired from 16 ETMR and the ETMR cell line BT183. Proteome data were integrated with case-matched global DNA methylation data, publicly available transcriptome data, and proteome data of further embryonal and pediatric brain tumors. RESULTS: Proteome-based cluster analyses grouped ETMR samples according to histomorphology, separating neuropil-rich tumors with neuronal signatures from primitive tumors with signatures relating to stemness and chromosome organization. Integrated proteomics showcased that ETMR and BT183 cells harbor proteasome regulatory proteins in abundancy, implicating their strong dependency on the proteasome machinery to safeguard proteostasis. Indeed, in vitro assays using BT183 highlighted that ETMR tumor cells are highly vulnerable towards treatment with the CNS penetrant proteasome inhibitor Marizomib. CONCLUSIONS: In summary, histomorphology stipulates the proteome signatures of ETMR, and proteasome regulatory proteins are pervasively abundant in these tumors. As validated in vitro, proteasome inhibition poses a promising therapeutic option in ETMR.

7.
Neuropathol Appl Neurobiol ; : e12949, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112165

RESUMO

AIM: Pilocytic astrocytomas (PA) in adults are rare and may be challenging to identify based only on histomorphology. Compared to their paediatric counterparts, they are reportedly molecularly more diverse and associated with a worse prognosis. We aimed to describe the characteristics of adult PAs more precisely by comprehensively profiling a series of 79 histologically diagnosed adult cases (≥18 years). METHODS: We performed global DNA methylation profiling and DNA and RNA panel sequencing, and integrated the results with clinical data. We further compared the molecular characteristics of adult and paediatric PAs that had a significant match to one of the established PA methylation classes in the Heidelberg brain tumour classifier. RESULTS: The mean age in our cohort was 33 years, and 43% of the tumours were located supratentorially. Based on methylation profiling, only 39% of the cases received a significant match to a PA methylation class. Sixteen per cent matched a different tumour type and 45% had a Heidelberg classifier score <0.9 with an affiliation to diverse established methylation classes in t-SNE analyses. Although the KIAA1549::BRAF fusion was found in 98% of paediatric PAs, this was true for only 27% of histologically defined and 55% of adult PAs defined by methylation profiling. CONCLUSIONS: A particularly high fraction of adult tumours with histological features of PA do not match current PA methylation classes, indicating ambiguous histology and an urgent need for molecular profiling. Moreover, even in adult PAs with a match to a PA methylation class, the distribution of genetic drivers differs significantly from their paediatric counterparts (p<0.01).

8.
Fluids Barriers CNS ; 20(1): 76, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875964

RESUMO

BACKGROUND: As a consequence of SARS-CoV-2 infection various neurocognitive and neuropsychiatric symptoms can appear, which may persist for several months post infection. However, cell type-specific routes of brain infection and underlying mechanisms resulting in neuroglial dysfunction are not well understood. METHODS: Here, we investigated the susceptibility of cells constituting the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP) to SARS-CoV-2 infection using human induced pluripotent stem cell (hiPSC)-derived cellular models and a ChP papilloma-derived epithelial cell line as well as ChP tissue from COVID-19 patients, respectively. RESULTS: We noted a differential infectibility of hiPSC-derived brain microvascular endothelial cells (BMECs) depending on the differentiation method. Extended endothelial culture method (EECM)-BMECs characterized by a complete set of endothelial markers, good barrier properties and a mature immune phenotype were refractory to SARS-CoV-2 infection and did not exhibit an activated phenotype after prolonged SARS-CoV-2 inoculation. In contrast, defined medium method (DMM)-BMECs, characterized by a mixed endothelial and epithelial phenotype and excellent barrier properties were productively infected by SARS-CoV-2 in an ACE2-dependent manner. hiPSC-derived brain pericyte-like cells (BPLCs) lacking ACE2 expression were not susceptible to SARS-CoV-2 infection. Furthermore, the human choroid plexus papilloma-derived epithelial cell line HIBCPP, modeling the BCSFB was productively infected by SARS-CoV-2 preferentially from the basolateral side, facing the blood compartment. Assessment of ChP tissue from COVID-19 patients by RNA in situ hybridization revealed SARS-CoV-2 transcripts in ChP epithelial and ChP stromal cells. CONCLUSIONS: Our study shows that the BCSFB of the ChP rather than the BBB is susceptible to direct SARS-CoV-2 infection. Thus, neuropsychiatric symptoms because of COVID-19 may rather be associated with dysfunction of the BCSFB than the BBB. Future studies should consider a role of the ChP in underlying neuropsychiatric symptoms following SARS-CoV-2 infection.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2/metabolismo , Pericitos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Epiteliais/metabolismo , Plexo Corióideo/metabolismo
9.
Cell Death Dis ; 14(9): 638, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758718

RESUMO

Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.


Assuntos
Glioblastoma , Doenças do Recém-Nascido , Humanos , Animais , Camundongos , Recém-Nascido , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Apoptose , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular
10.
Crit Care ; 27(1): 372, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759239

RESUMO

BACKGROUND: Sepsis-induced immunosuppression is a frequent cause of opportunistic infections and death in critically ill patients. A better understanding of the underlying mechanisms is needed to develop targeted therapies. Circulating bile acids with immunosuppressive effects were recently identified in critically ill patients. These bile acids activate the monocyte G-protein coupled receptor TGR5, thereby inducing profound innate immune dysfunction. Whether these mechanisms contribute to immunosuppression and disease severity in sepsis is unknown. The aim of this study was to determine if immunosuppressive bile acids are present in endotoxemia and septic shock and, if so, which patients are particularly at risk. METHODS: To induce experimental endotoxemia in humans, ten healthy volunteers received 2 ng/kg E. coli lipopolysaccharide (LPS). Circulating bile acids were profiled before and after LPS administration. Furthermore, 48 patients with early (shock onset within < 24 h) and severe septic shock (norepinephrine dose > 0.4 µg/kg/min) and 48 healthy age- and sex-matched controls were analyzed for circulating bile acids. To screen for immunosuppressive effects of circulating bile acids, the capability to induce TGR5 activation was computed for each individual bile acid profile by a recently published formula. RESULTS: Although experimental endotoxemia as well as septic shock led to significant increases in total bile acids compared to controls, this increase was mild in most cases. By contrast, there was a marked and significant increase in circulating bile acids in septic shock patients with severe liver failure compared to healthy controls (61.8 µmol/L vs. 2.8 µmol/L, p = 0.0016). Circulating bile acids in these patients were capable to induce immunosuppression, as indicated by a significant increase in TGR5 activation by circulating bile acids (20.4% in severe liver failure vs. 2.8% in healthy controls, p = 0.0139). CONCLUSIONS: Circulating bile acids capable of inducing immunosuppression are present in septic shock patients with severe liver failure. Future studies should examine whether modulation of bile acid metabolism can improve the clinical course and outcome of sepsis in these patients.


Assuntos
Endotoxemia , Falência Hepática , Sepse , Choque Séptico , Humanos , Choque Séptico/metabolismo , Endotoxemia/complicações , Ácidos e Sais Biliares , Lipopolissacarídeos , Escherichia coli , Estado Terminal
11.
Neuro Oncol ; 25(12): 2273-2286, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379234

RESUMO

BACKGROUND: The prognosis for Li-Fraumeni syndrome (LFS) patients with medulloblastoma (MB) is poor. Comprehensive clinical data for this patient group is lacking, challenging the development of novel therapeutic strategies. Here, we present clinical and molecular data on a retrospective cohort of pediatric LFS MB patients. METHODS: In this multinational, multicenter retrospective cohort study, LFS patients under 21 years with MB and class 5 or class 4 constitutional TP53 variants were included. TP53 mutation status, methylation subgroup, treatment, progression free- (PFS) and overall survival (OS), recurrence patterns, and incidence of subsequent neoplasms were evaluated. RESULTS: The study evaluated 47 LFS individuals diagnosed with MB, mainly classified as DNA methylation subgroup "SHH_3" (86%). The majority (74%) of constitutional TP53 variants represented missense variants. The 2- and 5-year (y-) PFS were 36% and 20%, and 2- and 5y-OS were 53% and 23%, respectively. Patients who received postoperative radiotherapy (RT) (2y-PFS: 44%, 2y-OS: 60%) or chemotherapy before RT (2y-PFS: 32%, 2y-OS: 48%) had significantly better clinical outcome then patients who were not treated with RT (2y-PFS: 0%, 2y-OS: 25%). Patients treated according to protocols including high-intensity chemotherapy and patients who received only maintenance-type chemotherapy showed similar outcomes (2y-PFS: 42% and 35%, 2y-OS: 68% and 53%, respectively). CONCLUSIONS: LFS MB patients have a dismal prognosis. In the presented cohort use of RT significantly increased survival rates, whereas chemotherapy intensity did not influence their clinical outcome. Prospective collection of clinical data and development of novel treatments are required to improve the outcome of LFS MB patients.


Assuntos
Neoplasias Cerebelares , Síndrome de Li-Fraumeni , Meduloblastoma , Criança , Humanos , Síndrome de Li-Fraumeni/complicações , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/terapia , Meduloblastoma/terapia , Meduloblastoma/tratamento farmacológico , Estudos Retrospectivos , Estudos Prospectivos , Neoplasias Cerebelares/terapia , Neoplasias Cerebelares/tratamento farmacológico , Mutação em Linhagem Germinativa , Proteína Supressora de Tumor p53/genética
12.
Eur J Cancer ; 187: 7-14, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098294

RESUMO

PURPOSE: Dedifferentiated melanoma (DedM) poses significant diagnostic challenges. We aimed to investigate the clinical, histopathological and molecular features of DedM. Methylation signature (MS) and copy number profiling (CNP) were carried out in a subgroup of cases. PATIENTS AND METHODS: A retrospective series of 78 DedM tissue samples from 61 patients retrieved from EORTC (European Organisation for Research and Treatment of Cancer) Melanoma Group centres were centrally reviewed. Clinical and histopathological features were retrieved. In a subgroup of patients, genotyping through Infinium Methylation microarray and CNP analysis was carried out. RESULTS: Most patients (60/61) had a metastatic DedM showing most frequently an unclassified pleomorphic, spindle cell, or small round cell morphology akin to undifferentiated soft tissue sarcoma, rarely associated with heterologous elements. Overall, among 20 successfully analysed tissue samples from 16 patients, we found retained melanoma-like MS in only 7 tissue samples while a non-melanoma-like MS was observed in 13 tissue samples. In two patients from whom multiple specimens were analysed, some of the samples had a preserved cutaneous melanoma MS while other specimens exhibited an epigenetic shift towards a mesenchymal/sarcoma-like profile, matching the histological features. In these two patients, CNP was largely identical across all analysed specimens, in line with their common clonal origin, despite significant modification of their epigenome. CONCLUSIONS: Our study further highlights that DedM represents a real diagnostic challenge. While MS and genomic CNP may help pathologists to diagnose DedM, we provide proof-of-concept that dedifferentiation in melanoma is frequently associated with epigenetic modifications.


Assuntos
Melanoma , Sarcoma , Neoplasias Cutâneas , Neoplasias de Tecidos Moles , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Melanoma/patologia , Estudos Retrospectivos , Sarcoma/diagnóstico
13.
Acta Neuropathol ; 145(5): 667-680, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933012

RESUMO

Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Neuroepiteliomatosas , Humanos , Adulto Jovem , Biomarcadores Tumorais/genética , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Fusão Gênica , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Receptores Proteína Tirosina Quinases/genética , Proteína Nuclear Ligada ao X/genética
14.
J Nucl Med ; 64(6): 873-879, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36732057

RESUMO

α-particle emitters have recently been explored as valuable therapeutic radionuclides. Yet, toxicity to healthy organs and cancer radioresistance limit the efficacy of targeted α-particle therapy (TAT). Identification of the radiation-activated mechanisms that drive cancer cell survival provides opportunities to develop new points for therapeutic interference to improve the efficacy and safety of TAT. Methods: Quantitative phosphoproteomics and matching proteomics followed by the bioinformatics analysis were used to identify alterations in the signaling networks in response to TAT with the 225Ac-labeled minigastrin analog 225Ac-PP-F11N (DOTA-(dGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe) in A431 cells, which overexpress cholecystokinin B receptor (CCKBR). Western blot analysis and microscopy verified the activation of the selected signaling pathways. Small-molecule inhibitors were used to validate the potential of the radiosensitizing combinatory treatments both in vitro and in A431/CCKBR tumor-bearing nude mice. Results: TAT-induced alterations were involved in DNA damage response, cell cycle regulation, and signal transduction, as well as RNA transcription and processing, cell morphology, and transport. Western blot analysis and microscopy confirmed increased phosphorylations of the key proteins involved in DNA damage response and carcinogenesis, including p53, p53 binding protein 1 (p53BP1), histone deacetylases (HDACs), and H2AX. Inhibition of HDAC class II, ataxia-telangiectasia mutated (ATM), and p38 kinases by TMP269, AZD1390, and SB202190, respectively, sensitized A431/CCKBR cells to 225Ac-PP-F11N. As compared with the control and monotherapies, the combination of 225Ac-PP-F11N with the HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) significantly reduced the viability and increased the DNA damage of A431/CCKBR cells, led to the most pronounced tumor growth inhibition, and extended the mean survival of A431/CCKBR xenografted nude mice. Conclusion: Our study revealed the cellular responses to TAT and demonstrated the radiosensitizing potential of HDAC inhibitors to 225Ac-PP-F11N in CCKBR-positive tumors. This proof-of-concept study recommends development of novel radiosensitizing strategies by targeting TAT-activated and survival-promoting signaling pathways.


Assuntos
Inibidores de Histona Desacetilases , Proteína Supressora de Tumor p53 , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Vorinostat/farmacologia , Transdução de Sinais , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico
15.
Fluids Barriers CNS ; 20(1): 12, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747230

RESUMO

BACKGROUND: The three-layered meninges cover and protect the central nervous system and form the interface between cerebrospinal fluid and the brain. They are host to a lymphatic system essential for maintaining fluid dynamics inside the cerebrospinal fluid-filled subarachnoid space and across the brain parenchyma via their connection to glymphatic structures. Meningeal fibroblasts lining and traversing the subarachnoid space have direct impact on the composition of the cerebrospinal fluid through endocytotic uptake as well as extensive protein secretion. In addition, the meninges are an active site for immunological processes and act as gatekeeper for immune cells entering the brain. During aging in mice, lymphatic drainage from the brain is less efficient contributing to neurodegenerative processes. Aging also affects the immunological status of the meninges, with increasing numbers of T cells, changing B cell make-up, and altered macrophage complement. METHODS: We employed RNASeq to measure gene expression and to identify differentially expressed genes in meninges isolated from young and aged mice. Using Ingenuity pathway, GO term, and MeSH analyses, we identified regulatory pathways and cellular functions in meninges affected by aging. RESULTS: Aging had profound impact on meningeal gene expression. Pathways related to innate as well as adaptive immunity were affected. We found evidence for increasing numbers of T and B lymphocytes and altered activity profiles for macrophages and other myeloid cells. Furthermore, expression of pro-inflammatory cytokine and chemokine genes increased with aging. Similarly, the complement system seemed to be more active in meninges of aged mice. Altered expression of solute carrier genes pointed to age-dependent changes in cerebrospinal fluid composition. In addition, gene expression for secreted proteins showed age-dependent changes, in particular, genes related to extracellular matrix composition and organization were affected. CONCLUSIONS: Aging has profound effects on meningeal gene expression; thereby affecting the multifaceted functions meninges perform to maintain the homeostasis of the central nervous system. Thus, age-dependent neurodegenerative processes and cognitive decline are potentially in part driven by altered meningeal function.


Assuntos
Sistema Nervoso Central , Meninges , Camundongos , Animais , Meninges/metabolismo , Encéfalo/fisiologia , Envelhecimento , Expressão Gênica
16.
Neuropathol Appl Neurobiol ; 49(1): e12856, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269599

RESUMO

BACKGROUND: DNA methylation-based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro-oncology. However, current implementation using hybridisation microarrays is time consuming and costly. We recently reported on shallow nanopore whole-genome sequencing for rapid and cost-effective generation of genome-wide 5-methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows us to discriminate a wide spectrum of primary brain tumours. RESULTS: Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000 random CpG features is sufficient for high-confidence classification by ad hoc random forests. We implemented score recalibration as a confidence measure for interpretation in a clinical context and empirically determined a platform-specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut-off to an independent validation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100% specificity. Cross-lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), the median time to results was 21.1 h. CONCLUSIONS: In conclusion, nanopore sequencing allows robust and rapid methylation-based classification across the full spectrum of brain tumours. Platform-specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.


Assuntos
Neoplasias Encefálicas , Sequenciamento por Nanoporos , Humanos , Metilação de DNA , Neoplasias Encefálicas/patologia , Genoma
17.
Histopathology ; 82(5): 722-730, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36583256

RESUMO

BACKGROUND: Hepatocellular adenoma (HCA) is a rare liver tumour, which can have atypical morphological features such as cytological atypia, pseudoglandular architecture, and altered reticulin framework. Little is known about the genetic and epigenetic alterations of such HCAs and whether they show the alterations classically found in hepatocellular carcinoma (HCC) or in HCA without atypical morphology. METHODS: We analysed five HCAs with atypical morphological features and one HCA with transition to HCC. Every tumour was subtyped by immunohistochemistry, sequenced by a targeted NGS panel, and analysed on a DNA methylation microarray. RESULTS: Subtyping of the five HCAs with atypical features revealed two ß-catenin mutated HCA (b-HCA), two ß-catenin mutated inflammatory HCA (b-IHCA), and one sonic hedgehog activated HCA (shHCA). None of them showed mutations typically found in HCC, such as, e.g. TERT or TP53 mutations. The epigenomic pattern of HCAs with atypical morphological features clustered with reference data for HCAs without atypical morphological features but not with HCC. Similarly, phyloepigenetic trees using the DNA methylation data reproducibly showed that HCAs with morphological atypia are much more similar to nonmalignant samples than to malignant samples. Finally, atypical HCAs showed no relevant copy number variations (CNV). CONCLUSION: In our series, mutational, DNA methylation, as well as CNV analyses, supported a relationship of atypical HCAs with nonatypical HCAs rather than with HCC. Therefore, in cases with difficult differential diagnosis between HCC and HCA, it might be advisable to perform targeted sequencing and/or combined methylation/copy number profiling.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Adenoma de Células Hepáticas/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , beta Catenina/genética , Variações do Número de Cópias de DNA , Proteínas Hedgehog , Epigênese Genética
18.
Nat Commun ; 13(1): 7148, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443295

RESUMO

The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent potentially previously misclassified adenoid cystic carcinomas. Our findings can aid in improving the diagnostic classification of sinonasal tumors and could help to change the current perception of SNUCs.


Assuntos
Carcinoma , Metilação de DNA , Humanos , Metilação de DNA/genética , Proteômica , Reprodutibilidade dos Testes , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição
19.
Dev Cell ; 57(15): 1847-1865.e9, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803280

RESUMO

Immune surveillance is critical to prevent tumorigenesis. Gliomas evade immune attack, but the underlying mechanisms remain poorly understood. We show that glioma cells can sustain growth independent of immune system constraint by reducing Notch signaling. Loss of Notch activity in a mouse model of glioma impairs MHC-I and cytokine expression and curtails the recruitment of anti-tumor immune cell populations in favor of immunosuppressive tumor-associated microglia/macrophages (TAMs). Depletion of T cells simulates Notch inhibition and facilitates tumor initiation. Furthermore, Notch-depleted glioma cells acquire resistance to interferon-γ and TAMs re-educating therapy. Decreased interferon response and cytokine expression by human and mouse glioma cells correlate with low Notch activity. These effects are paralleled by upregulation of oncogenes and downregulation of quiescence genes. Hence, suppression of Notch signaling enables gliomas to evade immune surveillance and increases aggressiveness. Our findings provide insights into how brain tumor cells shape their microenvironment to evade immune niche control.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica , Citocinas , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Evasão da Resposta Imune , Interferon gama/metabolismo , Camundongos , Receptores Notch , Microambiente Tumoral/fisiologia
20.
Clin Neuropathol ; 41(4): 153-156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35670246

RESUMO

The long-awaited 5th edition of the WHO brain tumor classification has put considerable emphasis on the importance of diagnostic DNA methylation profiling. In this article, the authors comparatively discuss selected practical aspects as well as general advantages and limitations of array- versus nanopore sequencing-based approaches to methylome profiling.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Metilação de DNA , Epigenoma , Humanos , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...